
m Fermi National Accelerator Laboratory 

FERMILAB-Pub-91/186-A 

UTAP-128/91 

July, 1991 _ 

Phase transitions triggered by quantum fluctuations 
in the inflationary universe 

MICHIYASU NAGASAWA~ AND JUN'ICHI YOKOYAMA~~~ 

‘Department of Physics, Faculty of Sciences, 
The University of Tokyo, Tokyo 113, Japan 

2NASA/Fermilab Astrophysics Center, 
Fermi National Accelerator Laboratory, Batavia, IL60510, USA 

ABSTILACT 

The dynamics of a second-order phase transition during inflation, which is induced by time- 

variation of spacetime curvature, is studied as a natural mechanism to produce topological defects 

of typical grand unification scales such as cosmic strings or global textures. It is shown that their 

distribution is almost scale-invariant with small- and large-scale cutoffs. Also discussed is how 

these cutoffs are given. 

s Operaled by Universities Research Association Inc. under Contract with the United States Department of Energy 



1 Introduction 

The idea of spontaneous symmetry breaking plays an important role in constructing unified the- 

ories of elementary interactions. At ultrahigh temperatures of order of their unification scale, it 

is believed that the presently broken symmetries are restored due to high-temperature correction 

to the potential of Higgs fields which determines the symmetry of the system. Unfortunately, 

however, it is hardly possible to verify their predictions experimentally, since the energy scale is 

higher than the accessible scales by many orders of magnitude in a laboratory. 

Trying to get out of such a frustrating situation, many people applied these theories to the 

early universe whose temperature, according to the conventional big bang cosmology, was once so 

high as the unification energy scale. One of their natural consequences is that the universe has 

presumably undergone a number of thermal phase transitions in the course of its early evolution, 

in scune of which topological defects such as walls, strings, monopoles, or textures may have been 

produced through the so-called Kibble mechanism [l]. Among them cosmic strings or global tex- 

tures may help large-scale structure formation if their energy scale is O(lO’sGeV) [2,3]. Detection 

of magnetic monopoles, on the other hand, is an important clue to verify unified theories because 

they are inevitably produced when the electromagnetic U(1) gauge group branches off at scme 

symmetry breaking [l, 2, 41. 

In discussing these phase transitions, it has been implicitly assumed that the universe was in 

thermal equilibrium state at least by the GUT era. However, in order to attain thermal equilibrium 

from an arbitrary initial state of the universe, it is necessary that particle interaction rates exceed 

the cosmic expansion rate, which is not always possible in such an early stage of cosmic evolution 

[5]. Hence formation of topological defects with typical GUT scale may not be described by the 

Kibble mechanism correctly unless the universe started its evolution in a thermal equilibrium 

state. 

It is more natural to expect that our universe started its classical evolution out of a chaotic state 

governed by quantum and thermal fluctuations [6] and that it underwent inflation to be globally 

homogeneous and isotropic as observed today [7]. Th en it turns out to be after the reheating 

epoch that the universe was first filled with radiation in thermal equilibrium. Unfortunately, the 
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maximum temperature it experienced, or the reheat temperature, may not be so high as the GUT 

scale generally in order to avoid too much gravitational waves or density fluctuations [8] and/or 

too many gravitinos [9] to be produced after inflation. On the other hand, models with high 

enough reheat temperature or extended inflation scenario may not solve the monopole problem, 

even if they may keep large enough density of strings or textures. Thus it is very difficult to obtain 

a sensible scenario of the early universe which provides an appropriate initial condition of galaxy 

formation through topological defects in the grand unification scale. 

In order to resolve this difficulty several mechanisms of non-thermal phase transitions have 

been proposed in which the Higgs field is coupled either with spacetime curvature ‘R [lo, 111 or 

the inflation-driving field 4 [12, 13, 141. Th e f ormer mechanism is especially plausible since the 

effective potential naturally has a finite-curvature correction in the inflating spacetime just as it 

would have a finite-temperature correction in the hot big bang universe [15]. In these scenarios 

phase transition takes place during the inflationary stage due to time variation of R or 4 and it 

is triggered by quantum fluctuations rather than thermal fluctuations. 

While the properties of thermal phase transitions have been extensively studied, those of the 

above non-thermal phase transitions have not been fully investigated. The purpose of the present 

paper is to clarify the dynamics of a second-order phase transition during inflation as well as 

the spectrum of the defects produced. Complementary to the present paper, the case topological 

defects are produced through a first-order phase transition has been studied by Copeland, Kolb, 

and Liddle [16] in the context of extended inflation scenario and quantum creation of defects 

through tunneling during inflation has been investigated by Basu, Guth, and Vile&n [17]. 

The rest of the paper is organized as follows. After introducing our model in 52, we examine 

when evolution of the scalar field becomes deterministic in 53. Then we estimate the power 

spectrum of quantum fluctuations in $4. In $5 the result of numerical simulations on the spectrum 

of defects thus produced is reported and its analytic interpretation is given. Finally $6 is devoted 

to discussion and conclusions. 
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2 The model 

In the present paper, for definiteness, we consider the chaotic inflation scenario realized by a 

massive scalar field 4 with mass m in the spatially flat Friedmann-Robertson-Walker spacetime 

dsa = dt’ - a(t)‘dx’ = u(T)‘(d$ - dx’). In the inflationary stage, the classical evolution of 4(t), 

the scale factor a(t), and the Hubble parameter H(t), is given by 

0) 

H(t) = 
J- 

g$(t) = Ho - $(t - to), (2) 

a(t) = aoexp $(4 - 4’(t))] = aoexp [& (Hi - H’(t))] , 

respectively, where I&d is the Planck mass and to is arbitrary epoch when a = ao, 4 = &, and 

H = Ho. The above expression is a good approximation when 4 satisfies the following inequality. 

4. = $g 5 d(t) 5 ($)’ (fy A+ 3 di. 

For 4 > ~$i the evolution of IJ~ is dominated by quantum fluctuations [18] and at 4 = 4. the time 

variation rate of ++J or d/4 becomes as large as the expansion rate H so that inflationary expansion 

terminates. The present horizon scale left the Hubble radius when C#J x 3Mpl corresponding to 

the e-folding number of inflation after this epoch to be about TZ z 60. In order for the density 

fluctuations to be small enough on this scale m should satisfy the constraint m 5 lO”GeV [19]. 

As is seen in (2), for H(t) 2 m/fi or 4 2 IQ/& time variation rate of the Hubble 

parameter is so small that the evolution of the scale factor is indistinguishable from that in de 

Sitter spacetime during each span of several expansion times. Hence we may utilize various results 

of quantum field theory in de Sitter spacetime. 

Here we consider the evolution of a scalar field x with the Lagrangian 

4 = ;(ax)’ - V[x], Vxl = $2 - .y + &l, 

with a positive coupling parameter t to the scalar curvature ‘R. Depending on the number of 

components of x, j, this system allows a domain wall (j = I), a string (j = 2), a monopole 
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(j = 3), or a texture (j = 4) solution if ,$?Z << X t?. In discussing the phase transition, however, 

we concentrate on the single-component case. Generalization to multi-components cases will be 

discussed in 56. 

In the inflationary stage the scalar curvature 72 is given by 

72 = 12Hs + 6& Z %rzs~s - 2ms. 
M,: 

(6) 

The symmetry of x is restored if&Q. > Xvs and second-order phase transition takes place as 77. 

decreases gradually. 

3 Evolution of the scalar fields 

In this section, we trace the evolution of x to discuss when its sign in each domain becomes 

fixed so that we may predict where topological defects will appear after completion of the phase 

transition. The symmetric state x = 0 becomes classically unstable when &Q, becomes smaller 

than Au”. Evolution of the scalar field after this epoch can be divided to two stages. In the first 

stage when its potential at the origin is still nearly flat, quantum fluctuations govern its evolution 

and its amplitude grows gradually. In the second stage typical amplitude of x becomes so large 

that its dynamics may be determined classically and its fate in each domain becomes predictable. 

We may regard that x’s sign is fixed in most domains at this epoch and follow its evolution 

classically thereafter. 

In terms of the mean square value of a scalar field Q with a constant mass M [20], 

I 
$[I-=P(--$)I, for M” > 0, 

(‘P’(t)) = St, for Mx = 0, (7) 

for M1 < 0, 

it has been naively concluded in the previous literatures j13, 211 that the first stage lasts while 

[M&I 5 H’, where M& s V”[x = 0] = -Xvs+t’R. is the mass squared at the origin, because the 

linear growth of mean square field with time is characteristic of the era dominated by long-wave 

quantum fluctuations. However, this criterion is not valid in the present case in which M.& is 

time-dependent. 
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In order to find a more appropriate way to estimate when the evolution of x becomes deter- 

ministic, let us focus on its long-wavelength part which is responsible for the symmetry breaking 

and satisfies the Langevin equation 

dx -=- Vxl m 
du 3Hs(u) + H(u)’ 

under the assumption of slow rolling, which is justified if IM.& < 9H’ [23]. Here we have used 

a new time variable u E lna(t) - In a(&,) which is th e e-folding number of cosmic expansion from 

to to t. The Hubble parameter squared is given by H’(u) = Ha(O) - {dtt s Hi - $z%. In the 

right-hand-side (RHS) of (8), the first t erm represents classical potential force, while the second 

term stands for random quantum noise with the correlation (f(ui)f(~s)) g W&(U~ - ur). The 

above Langevin equation yields the following equation of motion of (x’(u)) 

&(x’(u)) g g$)(X’b)) + s, 
where the term proportional to (X’(U)) h as b een neglected, which is shown to be a good approx- 

imation at the end of this section. Again the first term of the RHS is classical potential force 

and the second term represents quantum diffusion without which (9) would be the same as the 

classical equation of motion of x’. Thus by comparing magnitudes of the two terms, one may 

conclude if the evolution of x is dominated by potential force or fluctuations in typical domains. 

Equation (9) may readily be solved: 

(x’(u)) = 
[ 
(x’(O)) + g JoUes6” (1 - ~)“‘~~+~du!l e-stY (1 %aJ-~+Z(. (1o) 

If 2m=u < 3H,1 and ma < Xvs, 

and (10) reads 

(x’(u)) 

-WWt - W 

3H, u’ 11 

(11) 

(12) 



Since 12tHz - XV’ is equal to the mass squared of x, M&[u = 01, the above result is equivalent 

to that with a constant mass M x.& = 0] calculated by the one-loop field theoretic method in 

de Sitter spacetime (7) r. With th e above approximation (ll), (x”(u)) may increase or decrease 

depending on the sign of 12<Hi - Xuz or the choice of ts. 

We should hence consider higher order terms in order to discuss transition to the second stage. 

Let us first consider the last exponent of (lo), 

We can expand In G(u) as 

lnG(u) = -8tu + ml 

= 2(Xv* + 2&s - 12[H,‘)u + 2ms(Xvs + 2&nZ)Us 

3H; 9H; 

(13) 

The approximation (11) corresponds to adopting only the first term of (13). However, in the case 

M.&[u = 0] = 12tH,j - 2&ns - XV” is small, in which we are interested, the second term may 

dominate the first and G(u) grows. For simplicity, let us choose to so that M& = 0 or 

at that time. Then for small u, G(u) is given by 

G(u) zz exp 
32[=m= u2 

xvz+ 2&l&s 1 . 

Thus G(u) starts to grow exponentially at u s of with 

Similarly the integrand of (lo), which is denoted F(u’), may be approximated as 

lnF(u’) = - 
2ms(m’ + 2&7zs + Xv2) 

9H; 
u $ 3H,(Xv’ + ma + 2&n= - 12tH;) ’ 

2(ml+ 2.5ns + Xv’)d 1 
‘The equivalence between stochastic inflation method and field theoretic method has been discussed in [24]. 
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+ (Xv2 + d + 2&n= - 12tH,Z)s 
- 2(m2 + 2tms + ,w)m* 

Xv2 + d + 2[7,~=~ 

3m= 

32~sms 1 s ms 

Xvi ()- u+$ +2x+’ 

where in the last expression we have used our assumption of Xvs > ms. Thus the integral yields 

J u 5 Uf, 

0 212 “f> 
(18) 

The next task is to estimate (x’(O)), which may depend on the initial state of the universe in 

general. One may expect, however, that the amplitude of (x”) is 0((H/2~)~) at the epoch when 

M;,, = Ha, independent of the initial condition, if the inflationary expansion lasts long enough 

by that time. We have numerically calculated (x’(O)) using (10) starting with this condition for 

various values of c = M/ma ranging from 5 to 200 and [ = 3/16. (The reason why we adopted 

3/16 as < will become evident in the next section). As a result the inequality 

(x2(O)) 5 2 $7 /- 
was always satisfied. Hence (x’(0)) is unimportant in (10) for ‘1~ 2 uf and we may conclude 

(X’(U)) z g/zexp (““I;:~sus) 

Inserting this into (9), we find that classical potential force begins to dominate quantum fluctuation 

at tL z “f. 

The condition u = nf is realized at 

when the Hubble parameter, 

is related with M& as 

H; _ 1 
TqJ-12JzI 
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One can estimate the e-folding number of inflation after t = tf as 

H;-$ ) =+-L !. 
St J 4t 2 

In order that topological defects, which are thus produced, may leave observable traces, nf. should 

be smaller than z 60, otherwise they ares inflated away from the present horizon. Hence this sets 

an upper bound on c. On the other hand, it should be at least larger than zero for the above 

arguments to be valid. Thus c should satisfy the following inequality for t = 3/16. 

3 5 c 5 90. (22) 

So far we have entirely neglected contribution of (X’(U)) to M& and the term proportional 

to (x’(u)) = O((xs(u))‘) in (9). It is justified if 

(23) 

which we may regard as a constraint on A: 

X 5 128&rs~sc-f . (24) 

It is easy to satisfy the above inequality. Even if we take a rather large value of e, say c = 90, it 

only requires that X 5 10-s when [ = 3/16. 

4 Power spectrum of fluctuations 

Had there been no correlation beyond the Hubble horizon, we could have identified the correlation 

length of the phase transition with the Hubble length at t = tf. However, the scalar field is 

correlated on various scales due to the inflationary expansion, which is characterized by the power 

spectrum 1~~1s of long-wave quantum fluctuations given in terms of mode function xh(t). Here we 

calculate it. 

We decompose the operator x as 

x(x,t) = / ~[akX~(t)e’kx + ajX*(t)e-‘h], (25) 
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t where ah and a, are annihilation and creation operators, respectively, and the mode function 

satisfies the following equation of motion. 

gk(t) + 3HX’k(t) + dt) + M.&&(t) = 0. 

Using a new variable gk G af(t)xk the above equation is rewritten as 

[g+ (~)‘+,,-qri-~x’]a=o. 

(26) 

In the inflationary stage, when slow rolling condition ]i] < HZ is applicable, we may regard 

the Hubble parameter to be constant in several expansion time scales during which physical 

wave number k/a(t) decreases exponentially. Moreover since we are interested in the regime 

IM& 5 Ha where quantum fluctuations are important, equation (27) can be approximately 

solved by the Hankel function of rank 3/2 and the positive frequency mode corresponding to that 

in the Minkowski vacuum for k > Ha(t) reads 

where the mode function j&(t) is appropriately normalized according to 

j&(t)k;(t) - jj;(t)kk(t) = i. 

(28) 

(29) 

While the above expression (28) is a good approximation, the comoving mode k can shift from 

short-wavelength regime to long-wavelength regime. In the latter phase, in which (k/a(t))l is 

negligible in (27), one may solve it by means of the WKB method [22]. 

;Zk(t)^-ak.i(tk)(~)ie~p[~~~(t’)dt’]+Bkni(tk)(~)ie~p[-~~S(t’)dt’], (30) 

where 

S(t) E ;H 
4M” . 5 

1 - -&$ + $& 
) 

S ;H. (31) 

The WKB approximation is valid provided I.$ < 9. In the present model S(t) is explicitly 

written as 

S(t) = +(t) 1 - $( + (” - ;$it; 4xuz ‘. (32) 
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In the case t = 3/16 = 0.1875, which is slightly larger than the conformally coupled case < = 

l/6 = 0.166..., S(t) is time-independent: 

This is why we have taken [ = 3/16 in $3 and, for simplicity, we will mainly study this case in 

the following as well. 

The coefficients As and Bk may be determined by the initial condition at t = tk and normal- 

ization condition. One may determine the coefficient of the leading term Ak with the help of (28), 

which is explicitly written as 

j&(t) 22 4 
it’ 

!L&t) - L 4% a”(t) 
1 

,-‘x=$q 

% 4 $a’(t), i- (34) 

where the last expression is the approximate solution for the case the physical wavelength of k- 

mode is larger than the horizon scale (k 5 aH). With the approximation S(t) E iH(t), (30) 

reads 

gk(t) = .‘ikaf(tk)eXp [;H(t - th)] CT A&t). 

Thus from (34) and (35) we can determine Ak: as 

(35) 

Ak = H2(tk) 
J 2k3’ 

(36) 

where the unimportant phase factor has been omitted. Thus the mode function in the long- 

wavelength regime is given as 

One may get this result independently of the choice of the connecting time tk as far as both (28) 

and (30) are reasonable approximations at t = t k. Hereafter we take tk to be the epoch k-mode 

leaves the de Sitter horizon, that is, 

k = H(tk)a(tk) S HkUk. 
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For the case [ = 3/16, (37) reads 

Xk(t) = @“xP { -& [H: - H’(t)] + -&/q[& -H(t)]}. (39) 

This mode function begins growing at 

H(t) = ; 
J 

Xv2 - $ z H, (40) 

at which epoch M.& = -$. Because of the gradual decrease of the Hubble parameter, it is 

slightly after x = 0 becomes unstable that Xk starts to grow. 

The amplitude of (39) in the case [ = 3/16 and c = 5 is shown in Fig. 1, which depicts relative 

amphtude to that of a massless minimally-coupled scalar field in the exact de Sitter spacetime 

given by (Hjl/2k3)t. 

5 Distribution of the topological defects 

5.1 Method and results of numerical simulations 

Having estimated when evolution of x becomes dominated by the potential force in $3 and calcu- 

lated the power spectrum of its fluctuations at an arbitrary time in §4, we are now in a position 

to apply them to find the spectrum of topological defects produced. Following our two step ap- 

proximation described in $3, this is accomplished by calculating spatial distribution of the scalar 

field at t = tf. Thanks to the properties of the vacuum state realized as a result of inflationary 

expansion, x(x, tf) is classically given by summing up its Fourier modes as 

X(x,tf) = c bLk(X, tf) + 0.0. ; 6X,+, tf) = /6Xk(tf)/eikx+i’k, 
k 

(41) 

where j6xk(tf)l is a random value which has a Gaussian distribution with dispersion Ix’(tf)l’ and 

$?k is a random phase-factor. 

If we find the sign of x positive (negative) at a certain point at t = tf, it will fall down to the 

minimum of x = +V (-V) as phase transition proceeds, since its dynamics has been deterministic 

by this time in typical domains. Thus we may consider that domain walls are produced between 

two regions with opposite signs of x at this time. 
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We have first done three-dimensional simulations as illustrated in figure ZA, in which we have 

calculated the value of x(x, tf) through (41) a each point of 323 lattices using the power spectrum t 

of XI. with f = 3/16 and c = 5. We adopted fast Fourier-transform (FFT) method to speed up the 

calculation [25] and summed up 323 modes of 6xk with k ranging from 2?rHf/32 to 2~Hf, where 

H;’ is the separation of neighboring lattice-points taken to be the Hubble length at t = t,. In 

the figure dotted points will fall in the plus minimum or x = v and empty points in the minus 

minimum after the phase transition so that domain walls will be present between them. As is seen 

there, there are structures on various scales. This is in contrast to figure 2B, in which the sign of 

x has been randomly assigned to each lattice-point corresponding to the case of a thermal phase 

transition with the correlation length H;‘. 

In both cases, however, simulation boxes are dominated by walls with infinitely large surface 

area,. This is simply because both states of x = fv are realized with equal probability and hence 

it is unlikely that walls are so distributed that islands of plus minimum exist in the sea of minus 

minimum or vice versa Thus it is not appropriate to examine the ares-distribution of walls in 

order to discuss the character of phase transitions. 

Hence we instead focus on distribution of separation of each wall. For this purpose we do not 

have to calculate the value of (41) at all points in three dimensional space. But all we should find 

is its value along a line, which enables us to employ a much larger simulation box. In fact we have 

used a box with (2*3)3 lattice points and examined the distribution of domains along a line with 

213 points. We have done simulations for the following two cases: 

l A. Power spectrum is given by (39) with f = 3/16 and c = 5. 

l B. A scale-invariant power spectrum, 

is assigned corresponding to the case with a massless scalar field in de Sitter spacetime. 

In both cases we have summed 213 x 100 = 819200 independent mode functions in (41) with k 

ranging from 2rHt/213 to 2uHf. Simulations have also been done in the case a box with (21’)3 
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points. As a result no artificial boundary effect was observed. In addition simulations in which 

the upper bound of k is taken to be rHf have been carried out and no effect of smal-scale cutoff 

emerged. For comparison we have also studied the case 

a C. Sign of x is assigned at random at each point. 

We have done simulations for 500 times for each case and their results are depicted in Figure 3(A- 

C). We cau obtain various consequences from the graph. As is seen there domain-size distribution 

in phase transition during inflation (A and B) is again very different from that in thermal phase 

transition (C). In the latter case we can fit the distribution with an exponential function 

n(a,t,)da 0: exp(-0.67a)ds, (42) 

where a(s, tf) is the number density of domains with separation s N s +ds. This is simply because 

the number of domains with size aHT1 is proportional to the probability of having the same sign 

of x for s times in succession: 

n(s,tf)ds cc 
1 ’ 0 5 

ds 0: exp(-In2 s)ds 0: exp(-0.67s)ds. 

Thus our numerical simulation agrees with the analytic estimate. 

On the other hand, in the case B we may fit the distribution with a power-law 

n(s,tf)da cc a-Pds, with p = 3.0. (43) 

We can extend the above one-dimensional result into three dimension as follows. First let us 

define the effective correlation volume of a domain between two walls with separation s by V s 2. 

Then, since the probability to find a structure with this correlation volume by our simulation is 

proportional to its effective surface area or sr, number density of domains with correlation volume 

V N V + dV, n(V,tf), is related with n(a,tf) by 

Thus we have 

n(a,tf)ds o( +jtf)dV. 

83 
n(V,tf)dV cc n(s,tf).?da o( n(s,tt)d3s cc F. (44) 
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Therefore in the case scale-invariant fluctuation is assigned, we find that the spectrum of the 

resultant topological defects is also scale-invariant. Analytic arguments to derive this distribution 

will be given in the next subsection. 

Finally the plot A in Fig. 3, for which more realistic spectrum has been assigned, has almost 

the same profile as the plot B for s 5 80 but larger domains are suppressed because amplitudes 

of fluctuations with larger wavelength are smaller. From Figs. 1 and 3 we may conclude the 

fluctuation mode with dw smaller than w 10% of its maximum is unimportant and the 

spectrum of topological defects on such a large scale should approach that predicted by white-noise 

fluctuations. 

5.2 Analytic interpretation of a scale-invariant spectrum 

Here let us consider how the above scale-invariant feature of topological defects is explained 

analytically. To make the following discussion simple and clear let us focus on a patch of space 

which was homogeneous with x = 0 at t = 0. Let us further assume that the space may be 

divided into many domains of horizon volume He3 with different values of x at each time. Then 

probability distribution function of x is given by 

G(O,t) = (x’(x,t)) = $Ht. (45) 

Furthermore joint probability distribution reads 

p[X(xi, t) = Xi; X(xj, t, = Xjl = 
1 

2nG(O,t)&3i3j exp 

_ Xl + X: - 2P(r~ t)XiXj 
2G(O, t)[l - $(T, t)] ’ (46) 

where p(r,t) E G(r,t)/G(O,t) = (X(xi,t)X(Xj,t))/G(O,t) with IX; - xjl = P. The condition of 

existence of a wall at a certain point is that x changes its sign there, whose probability, F(t), is 

given by 

-~&ICC06 GW-‘,t) 9 1 1 = 
x 1 1 G(O,t) - ii (47) 

where the last approximation is justified if Ht > 1. Thus F(t) depends on t only weakly even 

though background space is expanding exponentially. 
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By assumption of homogeneity at t = 0, the largest possible wall at time t has a physical size 

of s = H-‘e*‘, so that F(t) is related with n(s, t) as 

F(t) z J,“J”“’ n(s, t)s’ds, (48) 

where t-dependence of n(s, t) reflects the fact that quantum fluctuations are generated continu- 

ously to produce and destroy topological defects successively in the course of cosmic expansion. 

Since this is a rather stationary process without any exponential instability, n(s, t) should not 

depend on t exponentially just as F(t) d oes not. Thus from (48) we expect that n(a, t) should 

be proportional to s-s to eliminate the exponential dependence on t of the upper bound of the 

integral. In this way we conclude that distribution of walls is scale-invariant and given by 

1 dss 
n(s, t)s”ds zzz ---, 

(Ht)z a3 

for Ht > 1. 

6 Discussion and Conclusions 

We have studied generic features of a second-order phase transition during inflation which is a 

more natural and attractive scenario to produce topological defects at GUT scale than the Kibble 

mechanism. We have considered a specific model in which x is coupled with spacetime curvature 

Rand phase transition takes place due to gradual decrease of the Hubble parameter. In this model 

we have clarified the nature of long-wavelength quantum fluctuations by explicitly calculating the 

power spectrum and (x2). 

In terms of the latter quantity we determined when classical potential force surpasses quantum 

fluctuations in typical domains and investigated the distribution of the field at that epoch through 

numerical calculations, by which we examined distribution of topological defects. 

As a result we have found that they have an almost scale-invariant distribution with small- 

and large-scale cutoffs. The former is naturally given by the comoving scale corresponding to the 

Hubble radius at the epoch time evolution of x becomes dominated by classical potential force, 

while our simulations have shown that the latter corresponds to the scale on which the amplitude 
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@ma- * of fluctuations becomes smaller than - 10% of its maximum value as is seen in Figs. 

1 and 3. On the larger scale the fluctuation amplitude becomes so small that the distribution 

should approach white-noise spectrum. 

Note that though Hodges and Primack reported similar results recently, i.e., scale-invariant 

distribution of topological defects produced during inflation, their treatment is not satisfactory in 

two aspects. First they have assumed that topological defects with a certain comoving scale are 

produced only when that scale leaves the Hubble radius during inflation. Contrary to their claim, 

however, defects are produced and destroyed on various scales continuously through successive 

generation of fluctuations as discussed in §5. Second they have not given cutoffs of the distribution 

explicitly. As is seen above we have significantly improved these points through our analyses. 

Finally we stress that our basic results are also applicable to other topological defects such as 

strings or textures in which we are more interested. For example, strings are loci on which both 

real and imaginary parts of string-forming complex scalar field changes sign. Hence if self coupling 

X of the field is small enough we can identify strings with intersections of two different kinds of 

independent Udomain walls.” Thus with the same reasoning as 55.2 they also have a scale-invariant 

distribution with cutoffs. Furthermore, since the model parameters must satisfy 

in order that strings thus produced are not diluted too much by subsequent inflation, we have 

A s lo-’ 
(lO1~eV)-' (101~eVtv)2' 

so that the condition of X being small is automatically satisfied for cosmologically important 

strings. 

Thus unlike the conventional scenario, strings or textures in the present model have almost 

scale-invariant spectrum from the beginning without any evolution but can serve as seeds for 

galaxy formation as weJl under natural choices of model parameters. 
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Figure Captions 

Fig. 1 Magnitude of the mode function Ixk(tr)l for t = $ and c = 5 as expressed in equation 

(39). Plotted values are relative amplitude to (H;/2ks)f. Ab scissa corresponds to the wavelength 

2ra(tf)/k in unit of H;l. 

Fig. 2A Distribution of domains in plus vacuum. Dotted points depict regions with x = +v. 

Values of the field are determined by giving correlations specified by (39). The box size is 32s and 

lattice separation is equal to Hy’. 

Fig. 2B Same as Figure 2A but the sign of x at each point is given randomly. 

Fig. 3 Distribution of the separation of domain walls. This figure shows the sum of 500 times 

simulations of the length 2 13. Plotted values are integrated one in each logarithmic interval. 

A(O): x(x,t,) is calculated using the power spectrum given by (39). 

B( X ): x(x, tf) is calculated using the scale-invariant power spectrum. Solid line is the power-law 

fitting whose power index is -2.0 due to integration. 

C(n): The sign of x(x,tf) is assigned randomly with equal probability corresponding to the 

thermal phase transition with correlation length H;‘. Th e plot fits an exponential function 

depicted by the dashed line. 
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